The Vertical Profile of Embedded Trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Vertical Profile of Embedded Trees

with nl−1 = nr+1 = 0. The sequence (nl, . . . , n−1;n0, . . . , nr) is called the vertical profile of the tree. The vertical profile of a uniform random tree of size n is known to converge, in a certain sense and after normalization, to a random mesure called the integrated superbrownian excursion, which motivates our interest in the profile. We prove similar looking formulas for other families...

متن کامل

The Subtree Size Profile of Bucket Recursive Trees

Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...

متن کامل

The profile of unlabeled trees

We consider the number of nodes in the levels of unlabeled rooted random trees and show that the joint distribution of several level sizes (where the level number is scaled by √ n) weakly converges to the distribution of the local time of a Brownian excursion evaluated at the times corresponding to the level numbers. This extends existing results for simply generated trees and forests to the ca...

متن کامل

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

Distances between pairs of vertices and vertical profile in conditioned Galton-Watson trees

We consider a conditioned Galton–Watson tree and prove an estimate of the number of pairs of vertices with a given distance, or, equivalently, the number of paths of a given length. We give two proofs of this result, one probabilistic and the other using generating functions and singularity analysis. Moreover, the second proof yields a more general estimate for generating functions, which is us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2150